Precursors to LISA SMBHB Mergers

Jeremy Schnittman NASA Goddard

TDAMM Workshop Annapolis, MD August 23, 2022

Electromagnetic Counterparts to LISA SMBHBs

- Mtot=106 Msun
- -q=0.1
- •z=1
- $L_x(in) \sim L_{Edd} \times f_x(a)$
- • $f_x(a) \sim 0.1 + 1/a$
- •L_x(out) ~ L_x(in) x R_{isco}/a
- $L_{var} \sim L_{x}(in) a^{-1/2}$
- $F_{XRT} \sim 3x10^{-15} x (1 hr/ttm)$

Noble+ 2018

Merger rates; detection rates

Klein+ 2016

Precursors to LISA sources are far more numerous

- From Klein et al. (2016), we estimate merger rate of ~0.01 Gpc⁻³ yr⁻¹
- Assume a fraction f_{gas} of the SMBHB sources are surrounded by circumbinary accretion disks
- These systems will be accreting at a rate f_{Edd} of the Eddington limit and modulated with amplitude ~10-30% and period P~P_{orb}
- This means that ~500,000 systems within z<1 will have T_{orb}~1 month, or 20 within 100 Mpc

Time to merger:

$$t_{\text{merge}} = \frac{5}{256} \frac{c^5}{G^3} \frac{a^4}{m_1 m_2 (m_1 + m_2)}$$

so for $m_1=10^6 M_{\odot}$, q=0.1 , the system has a separation of $a\approx 70\,r_g$ and an orbital period

$$T_{
m orb} = rac{2\pi}{\sqrt{G(m_1+m_2)}} a^{3/2} pprox 5$$
 hr a year before merger.

In terms of $T_{\rm orb}$, the time to merger scales like $t_{\rm merge} \propto T_{\rm orb}^{8/3}$, so if we set $T_{\rm orb}=1$ month, we get $t_{\rm merge}=5\times 10^5$ yr.

Precursors to IISA sources are far more numerous

 This means that ~500,000 systems within z<1 will have T_{orb}~1 month, or 20 within 100 Mpc

Time to merger:

$$t_{\text{merge}} = \frac{5}{256} \frac{c^5}{G^3} \frac{a^4}{m_1 m_2 (m_1 + m_2)}$$

so for $m_1=10^6 M_\odot$, q=0.1, the system has a separation of $a\approx 70~r_g$ and an orbital period $T_{\rm orb}=\frac{2\pi}{\sqrt{G(m_1+m_2)}}a^{3/2}\approx 5$ hr a year before merger.

In terms of $T_{\rm orb}$, the time to merger scales like $t_{\rm merge} \propto T_{\rm orb}^{8/3}$, so if we set $T_{\rm orb}=1$ month, we get $t_{\rm merge}=5\times 10^5$ yr.

Observational strategies: optical

- •LSST fov 9.6 deg²
- •m < 23 mag in 15sec!
- $N > 10^4 \text{ deg}^{-2}$

Observational strategies: X-ray (deep vs wide)

- TAP XRT fov 1.0 deg²
- F ~ $1x10^{-16}$ erg/s/cm² in 1 d
- N ~ 10⁴ deg⁻² (cf Chandra deep field)
- N_{pre} ~ 10 (T_{orb} < 1 mo, z<1)
- dFx $\sim 5x10^{-16}$ erg/s/cm²

- TAP XRT tiling 100 deg²
- F ~ $1x10^{-14}$ erg/s/cm² in 1 d
- N ~ 10 deg⁻² (cf ROSAT XS)
- $N_{pre} \sim 1 (T_{orb} < 1 mo, z < 0.14)$
- dFx $\sim 5x10^{-14}$ erg/s/cm²

Theoretical strategies/challenges: dynamic range

Theoretical strategies/challenges: dynamic range

Questions/eye candy

